38: Technical Aspects of Face Transplantation: Two Options for Total Face Harvesting

Alessio Baccarani, MD; Keith E. Follmar, BA; Jeffrey R. Marcus, MD; Detlev Erdmann, MD, PhD; L. Scott Levin, MD

BACKGROUND: Acquired facial deformity can result from trauma, burns, and tumor resection. Conventional techniques such as skin grafts, local flaps, free flaps, tissue expansion, and prosthetic reconstruction provide satisfactory outcomes in most patients in need of facial reconstruction. However, final outcomes remain unsatisfactory in a number of cases, both from a functional and an aesthetic standpoint.1 Facial transplantation may become a theoretically viable option in the treatment of patients with extensive facial disfigurement.2 The challenges associated with immunosuppression and the ethical issues surrounding face transplantation are substantial.3,4 One of the most significant technical questions that remains to be answered in face transplantation is how a facial allograft should be harvested and what tissues it can include. Two modalities of face harvesting are presented: myocutaneous and osteomyocutaneous.

METHOD: The myocutaneous flap is harvested by dissecting in a subgaleal, sub-SMAS, subplatysmal plane (figure 1). A variety of details of this technique are subject to modification. The osteomyocutaneous flap can be harvested by dissecting in a subperiosteal plane and performing a Le Fort III osteotomy. Thus, the entire soft tissue and bony structure of the face is harvested (figure 2). This flap can then be modified to meet the recipient’s specific reconstructive needs prior to insetting. Each of these techniques was performed on fresh human cadavers that had been perfused with latex.

RESULTS: Using each technique, the face was harvested successfully as a bipedicled flap based on the external carotid arteries, the external jugular veins, and the facial veins (figures 3 and 4). The myocutaneous flap appeared to be well perfused by the external carotid system throughout. The osteomyocutaneous flap appeared to be well perfused with the possible exception of a small portion of the bony segment, which, at worst, would function as a nonvascularized bone graft. Preservation of the periosteum in the osteomyocutaneous flap should improve the microvasculature integrity of the flap. These experimental findings are consistent with existing knowledge of vascular anatomy.5,6

CONCLUSION: Several obstacles to total face transplantation remain, the most daunting of which are ethical problems associated with chronic immunosuppression.7,8 Two modalities of face harvesting have been proposed. Each has been shown to be technically feasible based on cadaver studies, and tissues appear to be well vascularized as a bipedicled flap. In clinical practice, the face could first be harvested according to one of these standardized techniques, and could then be customized to meet a patient’s specific reconstructive needs. A number of details, including insetting of the flap, providing motor function, and avoiding graft-versus-host disease if lymph nodes are included in the flap remain to be explored. Total face transplantation is a realistic possibility, and we believe it will be performed once such additional obstacles have been overcome.
Figure 4. Harvested osteomyocutaneous (subperiosteal
Le Fort III) flap

REFERENCES:

39: Long Term Survival of Composite Hemiface/Mandible/Tongue Tissue Allograft Permitted by Donor Specific Chimerism

Yalcin Kulahci, MD; Aleksandra Klimczak, PhD; Maria Siemionow, MD, PhD, DSc

INTRODUCTION: Extensive head and neck deformities including bone and soft tissue defects are always challenging for reconstructive surgeons (1-3). The purpose of this study was to extend application of the face/scalp transplantation model in rat by incorporation of the vascularized mandible, mas- ter and tongue, based on the same vascular pedicle, as a new reconstructive option for extensive head and neck deformities with large soft and bone tissue defects (4,5).

METHODS: A total of 12 composite osseomusculocutaneous hemiface/mandible-tongue transplants were performed in two experimental groups. Group 1 isotransplantation between Lewis rats served as control without treatment (n=6). Group 2 (n=6) composite hemiface/mandible-tongue transplants were performed across MHC barrier between Lewis-Brown Norway (LBN, RT1i+n) donors and Lewis (RT1i) recipients. Hemimandibular bone, masseter muscle, tongue and hemifacial flaps were dissected on the same pedicle of external carotid artery and jugular vein and were transplanted to the donor inguinal region. All allogenic transplant recipients received 16mg/kg/day of CsA monotherapy tapered to 2 mg/kg/day and maintained at this level thereafter. All animals were monitored for signs of rejection such as erythema, edema, hair loss, desquamation. Flap angiography was done at 100th day post transplant by injection of barium sulfate and showed that the main arterial branch supplying the mandible was well-preserved within the flap. CT scan evaluated allograft viability. Flow cytometry assessed donor-specific chimerism for MHC class I-RT1n antigen. The samples of the skin and mandibular bone component of the graft were harvested and fixed in 10% formalin solution and then decalcified in 5% formic acid solution for 3 days. Next the fixed specimens were embedded in paraffin, and 3-µm sections were stained with H&E for bone histology and tested inflammatory response and grade of allograft rejection.

The histological rejection pattern of the skin was graded as described in the literature: grade 0, normal epidermal appearance without evidence of rejection; grade 1, focal mononuclear cell infiltration; grade 2, suprabasal bulla formation; and grade 3, vasculitis and complete skin necrosis with dermo-epidermal junction separation (6).

Three-color flow cytometry analysis was performed to evaluate chimerism level in the peripheral blood of Lewis recipients during observation time at day 7, 21, 63, 100 and 125 days post-transplant.

RESULTS: Isograft controls survived indefinitely. All six hemiface/mandible-tongue allotransplants survived up to 100 days (still under observation). Flap angiography demonstrated...
intact vascular supply pedicle and supply to the bone. No
signs of rejection and no flap loss were noted. CT scan and
bone histology confirmed viability of bone components of the
composite allografts. Viability of tongue was confirmed by
pink color, bleeding after puncture and histology. H+E staining
determined the presence of viable bone marrow cells within
transplanted mandible. This was accompanied by presence of
the donor-specific chimerism at day 100 posttransplant
T-cell (2.7% CD4/RT1n, 1.2% CD8/RT1n) and B-cell (11.5% CD45RA/RT1n) population (Figure 1).

CONCLUSIONS: We have introduced a new model of com-
posite osseomusculocutaneous hemiface/mandible-tongue al-
lograft transplant. Long-term allograft acceptance was accom-
panied by donor specific chimerism supported by vascularized
bone marrow transplant of the mandibular component. This
model may serve as a new reconstructive option for coverage of
extensive head and neck deformities involving large bone and
soft tissue defects performed in one surgical procedure.

Figure 1. Chimerism levels after transplantation.

REFERENCES:
1. Menick, F. J. Facial reconstruction with local and distant
tissue: The interface of aesthetic and reconstructive surgery.
in facial reconstruction. *Plast Reconstr Surg* 94:944-50,
1994
3. Pribaz JJ, Fine N, Orgill DP. Flap prefabrication in the head
and neck: a 10-year experience. *Plast Reconstr Surg* 103:808-
20, 1999
4. Siemionow M, Demir Y, Mukherjee A, Klimczak A: Devel-
opment and maintenance of donor-specific chimerism in
semi-allogenic and fully major histocompatibility
complex mismatched facial allograft transplants.
Transplantation 15;79(5):558-67, 2005
5. Ulusal BG, Ulusal AE, Ozmen S, Zins JE, Siemionow MZ.
A new composite facial and scalp transplantation model in
6. Buttemeyer R, Jones NF, Min Z, Rao U. Rejection of the
component tissues of limb allografts in rats immunosup
97(1):139-48; discussion 149-51, 1996

40: The Transverse Cervical Vessels as
Recipients in Difficult Head and Neck
Microsurgical Reconstructions

*Miroslav S. Gilardino, MD, MSc; Tassos
Dionisopoulos, MD; Beth R. Mizerny, MD;
Martin J. Black, MD; M. Lucie Lessard, MD*

INTRODUCTION: Availability of adequate recipient vessels for
microsurgical reconstruction of head and neck cancer in recurrent
or previously treated settings can be limited. While the
external carotid artery or one of its branches are used most
commonly as recipient vessels, there is a need for other options
when these are unavailable or unsuitable. The transverse
cervical vessels (TCVs) have been described as potential recipients
in such difficult reconstructive cases. To that end, the purpose
of the present study was to: 1) to determine the anatomic reli-
ability, landmarks and characteristics of the TCVs for use as
free flap recipients in challenging cases, and 2) review our
clinical experience using the TCVs as recipient vessels over a
10 year period at the McGill University Health Center.

METHODS: The anatomical characteristics of the TCVs were
studied in 16 fresh cadaver dissections. The clinical portion of
this study involved a review of all free flap head and neck recon-
structions using the TCVs as recipients over a ten year period
at the McGill University Head and Neck Surgery Clinic.

RESULTS: The transverse cervical artery (TCA) was found
to be present above the clavicle in the posterior triangle of
the neck in 98% of the dissections, with a usable pedicle length
between 40-70mm and an average diameter of 2.7mm. Its origin
was consistently 1-2cm under the lateral border of the
sternocleidomastoid muscle, 3cm from the midline. Suitable
size recipient veins were also identified in 85% of the dissec-
tions. Clinically, we report fourteen cases where the TCA was
used as a recipient. All but one patient had received preopera-
tive radiation therapy. The TCA was found to be virtually free
of fibrosis or atherosclerotic disease in all specimens (clinical
and cadaveric) that had received radiation treatment, while the
corresponding carotid system was significantly affected. There
were no flap failures.

CONCLUSION: Our anatomic study confirms that the TCVs
are reliably present with adequate size and length to serve as
recipients for free flap reconstruction. In addition, pedicle iden-
tification is facilitated by the provided landmarks. The position
of the TCA in the posterior triangle of the neck also appears to
spare it from surgical manipulation and radiation, thus render-
ing it particularly useful in salvage surgery and recurrences.
This conclusion is supported by the results of our clinical study,
demonstrating a 100% flap success rate in previously radiated
and difficult reconstructive head and neck cancer cases where
the TCA was employed as a recipient.
41: Panel Discussion — Reconstruction of a Cosmetic Nightmare

Moderator: Gregory R.D. Evans, MD, Orange, CA
A. Lee Dellon, MD, Baltimore, MD
Neil A. Fine, MD, Chicago, IL
Foad Nahai, MD, Atlanta, GA
Malcolm D. Paul, MD, Newport Beach, CA

OBJECTIVE: To educate participants regarding options for correcting difficult problems encountered in cosmetic surgery, and provide information for avoiding pitfalls for cosmetic surgical problems.

NOTES

42: Panel Discussion — Sternal Wounds: Do Plastic Surgeons Have a Role?

Moderator: Dennis P. Orgill, MD, PhD, Boston, MA
William G. Austen, MD, Boston, MA
Norman H. Schulman, MD, New York, NY
David H. Song, MD, Chicago, IL

OBJECTIVE: To provide state-of-the-art information on the role of flaps versus secondary closure methods and the necessary role of plastic surgeons in treatment of sternal wounds.

NOTES
43: Panel Discussion — Fresh Faces, Real Cases: A Complications Survival Guide

Moderator: Adam D. Lowenstein, MD, Lafayette, CO
Jeffrey E. Janis, MD, Dallas, TX
Susan E. MacLennan, MD, Colchester, VT
David Schnur, MD, Denver, CO
Joseph J. Disa, MD, New York, NY
Gregory R.D. Evans, MD, Orange, CA
Foad Nahai, MD, Atlanta, GA
Thomas Ray Stevenson, MD, Sacramento, CA
Jane S. Weston, MD, Atherton, CA

OBJECTIVE: Back by popular demand, we are pleased to present a selection of clinical cases from young surgeons. Panelists will present real complications from their practices, what went wrong, and how they managed it. Patient safety, mediolegal, and ethical issues will be discussed. Audience participation and debate is encouraged. See how you would handle these situations and what our senior panelists would do. Participants will be able to better recognize and treat a variety of complications in every day plastic surgical cases.

NOTES

44: Panel Discussion —

Moderator: James H. Wells, MD, Long Beach, CA
Tracey Hotta, RN, BScN, CPSN, Toronto, Ontario, Canada
Barbara B. Weber, RN, CPSN, Duluth, GA

OBJECTIVE: To discuss the collaboration of the physician, nurse and office staff to ensure that all risk factors are identified and that the client is adequately informed about their surgical experience; to identify the collaborative efforts of the physician, anesthesiologist and nursing team in the operating room to ensure a safe and positive surgical experience, and; to explain the importance of communication and collaboration of the health care team from the office to the operating room.

NOTES